Symmetries of Monocoronal Tilings
Discrete mathematics & theoretical computer science, Tome 17 (2015-2016) no. 2.

Voir la notice de l'article provenant de la source Episciences

The vertex corona of a vertex of some tiling is the vertex together with the adjacent tiles. A tiling where all vertex coronae are congruent is called monocoronal. We provide a classification of monocoronal tilings in the Euclidean plane and derive a list of all possible symmetry groups of monocoronal tilings. In particular, any monocoronal tiling with respect to direct congruence is crystallographic, whereas any monocoronal tiling with respect to congruence (reflections allowed) is either crystallographic or it has a one-dimensional translation group. Furthermore, bounds on the number of the dimensions of the translation group of monocoronal tilings in higher dimensional Euclidean space are obtained.
@article{DMTCS_2015_17_2_a14,
     author = {Frettl\"oh, Dirk and Garber, Alexey},
     title = {Symmetries of {Monocoronal} {Tilings}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015-2016},
     doi = {10.46298/dmtcs.2142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2142/}
}
TY  - JOUR
AU  - Frettlöh, Dirk
AU  - Garber, Alexey
TI  - Symmetries of Monocoronal Tilings
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2142/
DO  - 10.46298/dmtcs.2142
LA  - en
ID  - DMTCS_2015_17_2_a14
ER  - 
%0 Journal Article
%A Frettlöh, Dirk
%A Garber, Alexey
%T Symmetries of Monocoronal Tilings
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2142/
%R 10.46298/dmtcs.2142
%G en
%F DMTCS_2015_17_2_a14
Frettlöh, Dirk; Garber, Alexey. Symmetries of Monocoronal Tilings. Discrete mathematics & theoretical computer science, Tome 17 (2015-2016) no. 2. doi : 10.46298/dmtcs.2142. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2142/

Cité par Sources :