A relation on 132-avoiding permutation patterns
Discrete mathematics & theoretical computer science, Tome 17 (2015-2016) no. 2.

Voir la notice de l'article provenant de la source Episciences

A permutation $σ$ contains the permutation $τ$ if there is a subsequence of $σ$ order isomorphic to $τ$. A permutation $σ$ is $τ$-<i>avoiding</i> if it does not contain the permutation $τ$. For any $n$, the <i>popularity</i> of a permutation $τ$, denoted $A$<sub>$n$</sub>($τ$), is the number of copies of $τ$ contained in the set of all 132-avoiding permutations of length $n$. Rudolph conjectures that for permutations $τ$ and $μ$ of the same length, $A$<sub>$n$</sub>($τ$) ≤ $A$<sub>$n$</sub>($μ$) for all $n$ if and only if the spine structure of $τ$ is less than or equal to the spine structure of $μ$ in refinement order. We prove one direction of this conjecture, by showing that if the spine structure of $τ$ is less than or equal to the spine structure of $μ$, then $A$<sub>$n$</sub>($τ$) ≤ $A$<sub>$n$</sub>($μ$) for all $n$. We disprove the opposite direction by giving a counterexample, and hence disprove the conjecture.
@article{DMTCS_2015_17_2_a13,
     author = {Aisbett, Natalie},
     title = {A relation on 132-avoiding permutation patterns},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015-2016},
     doi = {10.46298/dmtcs.2141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2141/}
}
TY  - JOUR
AU  - Aisbett, Natalie
TI  - A relation on 132-avoiding permutation patterns
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2141/
DO  - 10.46298/dmtcs.2141
LA  - en
ID  - DMTCS_2015_17_2_a13
ER  - 
%0 Journal Article
%A Aisbett, Natalie
%T A relation on 132-avoiding permutation patterns
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2141/
%R 10.46298/dmtcs.2141
%G en
%F DMTCS_2015_17_2_a13
Aisbett, Natalie. A relation on 132-avoiding permutation patterns. Discrete mathematics & theoretical computer science, Tome 17 (2015-2016) no. 2. doi : 10.46298/dmtcs.2141. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2141/

Cité par Sources :