Eulerian $k$-dominating reconfiguration graphs
Discrete mathematics & theoretical computer science, Tome 27 (2025) no. 2.

Voir la notice de l'article provenant de la source Episciences

For a graph $G$, the vertices of the $k$-dominating graph, denoted $\mathcal{D}_k(G)$, correspond to the dominating sets of $G$ with cardinality at most $k$. Two vertices of $\mathcal{D}_k(G)$ are adjacent if and only if the corresponding dominating sets in $G$ can be obtained from one other by adding or removing a single vertex of $G$. Since $\mathcal{D}_k(G)$ is not necessarily connected when $k < |V(G)|$, much research has focused on conditions under which $\mathcal{D}_k(G)$ is connected and recent work has explored the existence of Hamilton paths in the $k$-dominating graph. We consider the complementary problem of determining the conditions under which the $k$-dominating graph is Eulerian. In the case where $k = |V(G)|$, we characterize those graphs $G$ for which $\mathcal{D}_k(G)$ is Eulerian. In the case where $k$ is restricted, we determine for a number of graph classes, the conditions under which the $k$-dominating graph is Eulerian.
@article{DMTCS_2025_27_2_a0,
     author = {Messinger, M. E. and Porter, A.},
     title = {Eulerian $k$-dominating reconfiguration graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2025},
     doi = {10.46298/dmtcs.13438},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13438/}
}
TY  - JOUR
AU  - Messinger, M. E.
AU  - Porter, A.
TI  - Eulerian $k$-dominating reconfiguration graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2025
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13438/
DO  - 10.46298/dmtcs.13438
LA  - en
ID  - DMTCS_2025_27_2_a0
ER  - 
%0 Journal Article
%A Messinger, M. E.
%A Porter, A.
%T Eulerian $k$-dominating reconfiguration graphs
%J Discrete mathematics & theoretical computer science
%D 2025
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13438/
%R 10.46298/dmtcs.13438
%G en
%F DMTCS_2025_27_2_a0
Messinger, M. E.; Porter, A. Eulerian $k$-dominating reconfiguration graphs. Discrete mathematics & theoretical computer science, Tome 27 (2025) no. 2. doi : 10.46298/dmtcs.13438. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13438/

Cité par Sources :