An Erd\H{o}s--Hajnal analogue for permutation classes
Discrete mathematics & theoretical computer science, Permutation Patterns 2015, Tome 18 (2015-2016) no. 2.

Voir la notice de l'article provenant de la source Episciences

Let $\mathcal{C}$ be a permutation class that does not contain all layered permutations or all colayered permutations. We prove that there is a constant $c$ such that every permutation in $\mathcal{C}$ of length $n$ contains a monotone subsequence of length $cn$.
@article{DMTCS_2016_18_2_a1,
     author = {Vatter, Vincent},
     title = {An {Erd\H{o}s--Hajnal} analogue for permutation classes},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015-2016},
     doi = {10.46298/dmtcs.1328},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1328/}
}
TY  - JOUR
AU  - Vatter, Vincent
TI  - An Erd\H{o}s--Hajnal analogue for permutation classes
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1328/
DO  - 10.46298/dmtcs.1328
LA  - en
ID  - DMTCS_2016_18_2_a1
ER  - 
%0 Journal Article
%A Vatter, Vincent
%T An Erd\H{o}s--Hajnal analogue for permutation classes
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1328/
%R 10.46298/dmtcs.1328
%G en
%F DMTCS_2016_18_2_a1
Vatter, Vincent. An Erd\H{o}s--Hajnal analogue for permutation classes. Discrete mathematics & theoretical computer science, Permutation Patterns 2015, Tome 18 (2015-2016) no. 2. doi : 10.46298/dmtcs.1328. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1328/

Cité par Sources :