Pattern avoidance for set partitions \`a la Klazar
Discrete mathematics & theoretical computer science, Permutation Patterns 2015, Tome 18 (2015-2016) no. 2.

Voir la notice de l'article provenant de la source Episciences

In 2000 Klazar introduced a new notion of pattern avoidance in the context of set partitions of $[n]=\{1,\ldots, n\}$. The purpose of the present paper is to undertake a study of the concept of Wilf-equivalence based on Klazar's notion. We determine all Wilf-equivalences for partitions with exactly two blocks, one of which is a singleton block, and we conjecture that, for $n\geq 4$, these are all the Wilf-equivalences except for those arising from complementation. If $\tau$ is a partition of $[k]$ and $\Pi_n(\tau)$ denotes the set of all partitions of $[n]$ that avoid $\tau$, we establish inequalities between $|\Pi_n(\tau_1)|$ and $|\Pi_n(\tau_2)|$ for several choices of $\tau_1$ and $\tau_2$, and we prove that if $\tau_2$ is the partition of $[k]$ with only one block, then $|\Pi_n(\tau_1)| <|\Pi_n(\tau_2)|$ for all $n>k$ and all partitions $\tau_1$ of $[k]$ with exactly two blocks. We conjecture that this result holds for all partitions $\tau_1$ of $[k]$. Finally, we enumerate $\Pi_n(\tau)$ for all partitions $\tau$ of $[4]$.
@article{DMTCS_2016_18_2_a8,
     author = {Bloom, Jonathan and Saracino, Dan},
     title = {Pattern avoidance for set partitions \`a la {Klazar}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015-2016},
     doi = {10.46298/dmtcs.1327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1327/}
}
TY  - JOUR
AU  - Bloom, Jonathan
AU  - Saracino, Dan
TI  - Pattern avoidance for set partitions \`a la Klazar
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1327/
DO  - 10.46298/dmtcs.1327
LA  - en
ID  - DMTCS_2016_18_2_a8
ER  - 
%0 Journal Article
%A Bloom, Jonathan
%A Saracino, Dan
%T Pattern avoidance for set partitions \`a la Klazar
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1327/
%R 10.46298/dmtcs.1327
%G en
%F DMTCS_2016_18_2_a8
Bloom, Jonathan; Saracino, Dan. Pattern avoidance for set partitions \`a la Klazar. Discrete mathematics & theoretical computer science, Permutation Patterns 2015, Tome 18 (2015-2016) no. 2. doi : 10.46298/dmtcs.1327. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1327/

Cité par Sources :