$2\times 2$ monotone grid classes are finitely based
Discrete mathematics & theoretical computer science, Permutation Patterns 2015, Tome 18 (2015-2016) no. 2.

Voir la notice de l'article provenant de la source Episciences

In this note, we prove that all $2 \times 2$ monotone grid classes are finitely based, i.e., defined by a finite collection of minimal forbidden permutations. This follows from a slightly more general result about certain $2 \times 2$ (generalized) grid classes having two monotone cells in the same row.
@article{DMTCS_2016_18_2_a0,
     author = {Albert, Michael and Brignall, Robert},
     title = {$2\times 2$ monotone grid classes are finitely based},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015-2016},
     doi = {10.46298/dmtcs.1325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1325/}
}
TY  - JOUR
AU  - Albert, Michael
AU  - Brignall, Robert
TI  - $2\times 2$ monotone grid classes are finitely based
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1325/
DO  - 10.46298/dmtcs.1325
LA  - en
ID  - DMTCS_2016_18_2_a0
ER  - 
%0 Journal Article
%A Albert, Michael
%A Brignall, Robert
%T $2\times 2$ monotone grid classes are finitely based
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1325/
%R 10.46298/dmtcs.1325
%G en
%F DMTCS_2016_18_2_a0
Albert, Michael; Brignall, Robert. $2\times 2$ monotone grid classes are finitely based. Discrete mathematics & theoretical computer science, Permutation Patterns 2015, Tome 18 (2015-2016) no. 2. doi : 10.46298/dmtcs.1325. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1325/

Cité par Sources :