On the mod $k$ chromatic index of graphs
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3.

Voir la notice de l'article provenant de la source Episciences

For a graph $G$ and an integer $k\geq 2$, a $\chi'_{k}$-coloring of $G$ is an edge coloring of $G$ such that the subgraph induced by the edges of each color has all degrees congruent to $1 ~ (\mod k)$, and $\chi'_{k}(G)$ is the minimum number of colors in a $\chi'_{k}$-coloring of $G$. In ["The mod $k$ chromatic index of graphs is $O(k)$", J. Graph Theory. 2023; 102: 197-200], Botler, Colucci and Kohayakawa proved that $\chi'_{k}(G)\leq 198k-101$ for every graph $G$. In this paper, we show that $\chi'_{k}(G) \leq 177k-93$.
@article{DMTCS_2024_26_3_a13,
     author = {Nweit, Oothan and Yang, Daqing},
     title = {On the mod $k$ chromatic index of graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     doi = {10.46298/dmtcs.13187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13187/}
}
TY  - JOUR
AU  - Nweit, Oothan
AU  - Yang, Daqing
TI  - On the mod $k$ chromatic index of graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13187/
DO  - 10.46298/dmtcs.13187
LA  - en
ID  - DMTCS_2024_26_3_a13
ER  - 
%0 Journal Article
%A Nweit, Oothan
%A Yang, Daqing
%T On the mod $k$ chromatic index of graphs
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13187/
%R 10.46298/dmtcs.13187
%G en
%F DMTCS_2024_26_3_a13
Nweit, Oothan; Yang, Daqing. On the mod $k$ chromatic index of graphs. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3. doi : 10.46298/dmtcs.13187. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13187/

Cité par Sources :