Descent c-Wilf Equivalence
Discrete mathematics & theoretical computer science, Permutation Patterns 2015, Tome 18 (2015-2016) no. 2.

Voir la notice de l'article provenant de la source Episciences

Let $S_n$ denote the symmetric group. For any $\sigma \in S_n$, we let $\mathrm{des}(\sigma)$ denote the number of descents of $\sigma$, $\mathrm{inv}(\sigma)$ denote the number of inversions of $\sigma$, and $\mathrm{LRmin}(\sigma)$ denote the number of left-to-right minima of $\sigma$. For any sequence of statistics $\mathrm{stat}_1, \ldots \mathrm{stat}_k$ on permutations, we say two permutations $\alpha$ and $\beta$ in $S_j$ are $(\mathrm{stat}_1, \ldots \mathrm{stat}_k)$-c-Wilf equivalent if the generating function of $\prod_{i=1}^k x_i^{\mathrm{stat}_i}$ over all permutations which have no consecutive occurrences of $\alpha$ equals the generating function of $\prod_{i=1}^k x_i^{\mathrm{stat}_i}$ over all permutations which have no consecutive occurrences of $\beta$. We give many examples of pairs of permutations $\alpha$ and $\beta$ in $S_j$ which are $\mathrm{des}$-c-Wilf equivalent, $(\mathrm{des},\mathrm{inv})$-c-Wilf equivalent, and $(\mathrm{des},\mathrm{inv},\mathrm{LRmin})$-c-Wilf equivalent. For example, we will show that if $\alpha$ and $\beta$ are minimally overlapping permutations in $S_j$ which start with 1 and end with the same element and $\mathrm{des}(\alpha) = \mathrm{des}(\beta)$ and $\mathrm{inv}(\alpha) = \mathrm{inv}(\beta)$, then $\alpha$ and $\beta$ are $(\mathrm{des},\mathrm{inv})$-c-Wilf equivalent.
@article{DMTCS_2016_18_2_a11,
     author = {Bach, Quang T. and Remmel, Jeffrey B.},
     title = {Descent {c-Wilf} {Equivalence}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015-2016},
     doi = {10.46298/dmtcs.1312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1312/}
}
TY  - JOUR
AU  - Bach, Quang T.
AU  - Remmel, Jeffrey B.
TI  - Descent c-Wilf Equivalence
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1312/
DO  - 10.46298/dmtcs.1312
LA  - en
ID  - DMTCS_2016_18_2_a11
ER  - 
%0 Journal Article
%A Bach, Quang T.
%A Remmel, Jeffrey B.
%T Descent c-Wilf Equivalence
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1312/
%R 10.46298/dmtcs.1312
%G en
%F DMTCS_2016_18_2_a11
Bach, Quang T.; Remmel, Jeffrey B. Descent c-Wilf Equivalence. Discrete mathematics & theoretical computer science, Permutation Patterns 2015, Tome 18 (2015-2016) no. 2. doi : 10.46298/dmtcs.1312. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1312/

Cité par Sources :