Asymptotic Density of Zimin Words
Discrete mathematics & theoretical computer science, Tome 18 (2015-2016) no. 3.

Voir la notice de l'article provenant de la source Episciences

Word $W$ is an instance of word $V$ provided there is a homomorphism $\phi$ mapping letters to nonempty words so that $\phi(V) = W$. For example, taking $\phi$ such that $\phi(c)=fr$, $\phi(o)=e$ and $\phi(l)=zer$, we see that "freezer" is an instance of "cool". Let $\mathbb{I}_n(V,[q])$ be the probability that a random length $n$ word on the alphabet $[q] = \{1,2,\cdots q\}$ is an instance of $V$. Having previously shown that $\lim_{n \rightarrow \infty} \mathbb{I}_n(V,[q])$ exists, we now calculate this limit for two Zimin words, $Z_2 = aba$ and $Z_3 = abacaba$.
@article{DMTCS_2016_18_3_a4,
     author = {Cooper, Joshua and Rorabaugh, Danny},
     title = {Asymptotic {Density} of {Zimin} {Words}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015-2016},
     doi = {10.46298/dmtcs.1302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1302/}
}
TY  - JOUR
AU  - Cooper, Joshua
AU  - Rorabaugh, Danny
TI  - Asymptotic Density of Zimin Words
JO  - Discrete mathematics & theoretical computer science
PY  - 2015-2016
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1302/
DO  - 10.46298/dmtcs.1302
LA  - en
ID  - DMTCS_2016_18_3_a4
ER  - 
%0 Journal Article
%A Cooper, Joshua
%A Rorabaugh, Danny
%T Asymptotic Density of Zimin Words
%J Discrete mathematics & theoretical computer science
%D 2015-2016
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1302/
%R 10.46298/dmtcs.1302
%G en
%F DMTCS_2016_18_3_a4
Cooper, Joshua; Rorabaugh, Danny. Asymptotic Density of Zimin Words. Discrete mathematics & theoretical computer science, Tome 18 (2015-2016) no. 3. doi : 10.46298/dmtcs.1302. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1302/

Cité par Sources :