Structural Parameterizations of the Biclique-Free Vertex Deletion Problem
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3.

Voir la notice de l'article provenant de la source Episciences

In this work, we study the Biclique-Free Vertex Deletion problem: Given a graph $G$ and integers $k$ and $i \le j$, find a set of at most $k$ vertices that intersects every (not necessarily induced) biclique $K_{i, j}$ in $G$. This is a natural generalization of the Bounded-Degree Deletion problem, wherein one asks whether there is a set of at most $k$ vertices whose deletion results in a graph of a given maximum degree $r$. The two problems coincide when $i = 1$ and $j = r + 1$. We show that Biclique-Free Vertex Deletion is fixed-parameter tractable with respect to $k + d$ for the degeneracy $d$ by developing a $2^{O(d k^2)} \cdot n^{O(1)}$-time algorithm. We also show that it can be solved in $2^{O(f k)} \cdot n^{O(1)}$ time for the feedback vertex number $f$ when $i \ge 2$. In contrast, we find that it is W[1]-hard for the treedepth for any integer $i \ge 1$. Finally, we show that Biclique-Free Vertex Deletion has a polynomial kernel for every $i \ge 1$ when parameterized by the feedback edge number. Previously, for this parameter, its fixed-parameter tractability for $i = 1$ was known (Betzler et al., 2012) but the existence of polynomial kernel was open.
@article{DMTCS_2024_26_3_a1,
     author = {Goldmann, Lito and Kellerhals, Leon and Koana, Tomohiro},
     title = {Structural {Parameterizations} of the {Biclique-Free} {Vertex} {Deletion} {Problem}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     doi = {10.46298/dmtcs.13018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13018/}
}
TY  - JOUR
AU  - Goldmann, Lito
AU  - Kellerhals, Leon
AU  - Koana, Tomohiro
TI  - Structural Parameterizations of the Biclique-Free Vertex Deletion Problem
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13018/
DO  - 10.46298/dmtcs.13018
LA  - en
ID  - DMTCS_2024_26_3_a1
ER  - 
%0 Journal Article
%A Goldmann, Lito
%A Kellerhals, Leon
%A Koana, Tomohiro
%T Structural Parameterizations of the Biclique-Free Vertex Deletion Problem
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13018/
%R 10.46298/dmtcs.13018
%G en
%F DMTCS_2024_26_3_a1
Goldmann, Lito; Kellerhals, Leon; Koana, Tomohiro. Structural Parameterizations of the Biclique-Free Vertex Deletion Problem. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3. doi : 10.46298/dmtcs.13018. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.13018/

Cité par Sources :