On some generalized $q$-Eulerian polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

The $(q,r)$-Eulerian polynomials are the $(\mathrm{maj-exc, fix, exc})$ enumerative polynomials of permutations. Using Shareshian and Wachs' exponential generating function of these Eulerian polynomials, Chung and Graham proved two symmetrical $q$-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata and Han's three-variable statistic $(\mathrm{inv-lec, pix, lec})$. We also prove a new recurrence formula for the $(q,r)$-Eulerian polynomials and study a $q$-analogue of Chung and Graham's restricted Eulerian polynomials. In particular, we obtain a symmetrical identity for these restricted $q$-Eulerian polynomials with a combinatorial proof.
@article{DMTCS_2013_special_264_a93,
     author = {Lin, Zhicong},
     title = {On some generalized $q${-Eulerian} polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.12822},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12822/}
}
TY  - JOUR
AU  - Lin, Zhicong
TI  - On some generalized $q$-Eulerian polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12822/
DO  - 10.46298/dmtcs.12822
LA  - en
ID  - DMTCS_2013_special_264_a93
ER  - 
%0 Journal Article
%A Lin, Zhicong
%T On some generalized $q$-Eulerian polynomials
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12822/
%R 10.46298/dmtcs.12822
%G en
%F DMTCS_2013_special_264_a93
Lin, Zhicong. On some generalized $q$-Eulerian polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12822. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12822/

Cité par Sources :