Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2013_special_264_a92, author = {Duchamp, G. and Hoang-Nghia, N. and Krajewski, Thomas and Tanasa, A.}, title = {Renormalization group-like proof of the universality of the {Tutte} polynomial for matroids}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)}, year = {2013}, doi = {10.46298/dmtcs.12821}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12821/} }
TY - JOUR AU - Duchamp, G. AU - Hoang-Nghia, N. AU - Krajewski, Thomas AU - Tanasa, A. TI - Renormalization group-like proof of the universality of the Tutte polynomial for matroids JO - Discrete mathematics & theoretical computer science PY - 2013 VL - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12821/ DO - 10.46298/dmtcs.12821 LA - en ID - DMTCS_2013_special_264_a92 ER -
%0 Journal Article %A Duchamp, G. %A Hoang-Nghia, N. %A Krajewski, Thomas %A Tanasa, A. %T Renormalization group-like proof of the universality of the Tutte polynomial for matroids %J Discrete mathematics & theoretical computer science %D 2013 %V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12821/ %R 10.46298/dmtcs.12821 %G en %F DMTCS_2013_special_264_a92
Duchamp, G.; Hoang-Nghia, N.; Krajewski, Thomas; Tanasa, A. Renormalization group-like proof of the universality of the Tutte polynomial for matroids. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12821. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12821/
Cité par Sources :