Renormalization group-like proof of the universality of the Tutte polynomial for matroids
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

In this paper we give a new proof of the universality of the Tutte polynomial for matroids. This proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra characters are solutions of some differential equations which are of the same type as the differential equations used to describe the renormalization group flow in quantum field theory. This approach allows us to also prove, in a different way, a matroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999). This FPSAC contribution is an extended abstract.
@article{DMTCS_2013_special_264_a92,
     author = {Duchamp, G. and Hoang-Nghia, N. and Krajewski, Thomas and Tanasa, A.},
     title = {Renormalization group-like proof of the universality of the {Tutte} polynomial for matroids},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.12821},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12821/}
}
TY  - JOUR
AU  - Duchamp, G.
AU  - Hoang-Nghia, N.
AU  - Krajewski, Thomas
AU  - Tanasa, A.
TI  - Renormalization group-like proof of the universality of the Tutte polynomial for matroids
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12821/
DO  - 10.46298/dmtcs.12821
LA  - en
ID  - DMTCS_2013_special_264_a92
ER  - 
%0 Journal Article
%A Duchamp, G.
%A Hoang-Nghia, N.
%A Krajewski, Thomas
%A Tanasa, A.
%T Renormalization group-like proof of the universality of the Tutte polynomial for matroids
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12821/
%R 10.46298/dmtcs.12821
%G en
%F DMTCS_2013_special_264_a92
Duchamp, G.; Hoang-Nghia, N.; Krajewski, Thomas; Tanasa, A. Renormalization group-like proof of the universality of the Tutte polynomial for matroids. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12821. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12821/

Cité par Sources :