On the Spectra of Simplicial Rook Graphs
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

The $\textit{simplicial rook graph}$ $SR(d,n)$ is the graph whose vertices are the lattice points in the $n$th dilate of the standard simplex in $\mathbb{R}^d$, with two vertices adjacent if they differ in exactly two coordinates. We prove that the adjacency and Laplacian matrices of $SR(3,n)$ have integral spectra for every $n$. We conjecture that $SR(d,n)$ is integral for all $d$ and $n$, and give a geometric construction of almost all eigenvectors in terms of characteristic vectors of lattice permutohedra. For $n \leq \binom{d}{2}$, we give an explicit construction of smallest-weight eigenvectors in terms of rook placements on Ferrers diagrams. The number of these eigenvectors appears to satisfy a Mahonian distribution.
@article{DMTCS_2013_special_264_a90,
     author = {Martin, Jeremy L. and Wagner, Jennifer D.},
     title = {On the {Spectra} of {Simplicial} {Rook} {Graphs}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.12819},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12819/}
}
TY  - JOUR
AU  - Martin, Jeremy L.
AU  - Wagner, Jennifer D.
TI  - On the Spectra of Simplicial Rook Graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12819/
DO  - 10.46298/dmtcs.12819
LA  - en
ID  - DMTCS_2013_special_264_a90
ER  - 
%0 Journal Article
%A Martin, Jeremy L.
%A Wagner, Jennifer D.
%T On the Spectra of Simplicial Rook Graphs
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12819/
%R 10.46298/dmtcs.12819
%G en
%F DMTCS_2013_special_264_a90
Martin, Jeremy L.; Wagner, Jennifer D. On the Spectra of Simplicial Rook Graphs. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12819. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12819/

Cité par Sources :