Schubert polynomials and $k$-Schur functions (Extended abstract)
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function can be understood from the multiplication in the space of dual $k$-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the $r$-Bruhat order given by Bergeron-Sottile, along with certain operators associated to this order. On the other side, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem.
@article{DMTCS_2013_special_264_a87,
     author = {Benedetti, Carolina and Bergeron, Nantel},
     title = {Schubert polynomials and $k${-Schur} functions {(Extended} abstract)},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.12816},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12816/}
}
TY  - JOUR
AU  - Benedetti, Carolina
AU  - Bergeron, Nantel
TI  - Schubert polynomials and $k$-Schur functions (Extended abstract)
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12816/
DO  - 10.46298/dmtcs.12816
LA  - en
ID  - DMTCS_2013_special_264_a87
ER  - 
%0 Journal Article
%A Benedetti, Carolina
%A Bergeron, Nantel
%T Schubert polynomials and $k$-Schur functions (Extended abstract)
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12816/
%R 10.46298/dmtcs.12816
%G en
%F DMTCS_2013_special_264_a87
Benedetti, Carolina; Bergeron, Nantel. Schubert polynomials and $k$-Schur functions (Extended abstract). Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12816. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12816/

Cité par Sources :