Immaculate basis of the non-commutative symmetric functions
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

We introduce a new basis of the non-commutative symmetric functions whose elements have Schur functions as their commutative images. Dually, we build a basis of the quasi-symmetric functions which expand positively in the fundamental quasi-symmetric functions and decompose Schur functions according to a signed combinatorial formula.
@article{DMTCS_2013_special_264_a81,
     author = {Berg, Chris and Bergeron, Nantel and Saliola, Franco and Serrano, Luis and Zabrocki, Mike},
     title = {Immaculate basis of the non-commutative symmetric functions},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.12810},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12810/}
}
TY  - JOUR
AU  - Berg, Chris
AU  - Bergeron, Nantel
AU  - Saliola, Franco
AU  - Serrano, Luis
AU  - Zabrocki, Mike
TI  - Immaculate basis of the non-commutative symmetric functions
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12810/
DO  - 10.46298/dmtcs.12810
LA  - en
ID  - DMTCS_2013_special_264_a81
ER  - 
%0 Journal Article
%A Berg, Chris
%A Bergeron, Nantel
%A Saliola, Franco
%A Serrano, Luis
%A Zabrocki, Mike
%T Immaculate basis of the non-commutative symmetric functions
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12810/
%R 10.46298/dmtcs.12810
%G en
%F DMTCS_2013_special_264_a81
Berg, Chris; Bergeron, Nantel; Saliola, Franco; Serrano, Luis; Zabrocki, Mike. Immaculate basis of the non-commutative symmetric functions. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12810. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12810/

Cité par Sources :