Matroids over a ring
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

We introduce the notion of a matroid $M$ over a commutative ring $R$, assigning to every subset of the ground set an $R$-module according to some axioms. When $R$ is a field, we recover matroids. When $R=\mathbb{Z}$, and when $R$ is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, respectively. More generally, whenever $R$ is a Dedekind domain, we extend the usual properties and operations holding for matroids (e.g., duality), and we compute the Tutte-Grothendieck group of matroids over $R$.
@article{DMTCS_2013_special_264_a72,
     author = {Fink, Alex and Moci, Luca},
     title = {Matroids over a ring},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.12801},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12801/}
}
TY  - JOUR
AU  - Fink, Alex
AU  - Moci, Luca
TI  - Matroids over a ring
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12801/
DO  - 10.46298/dmtcs.12801
LA  - en
ID  - DMTCS_2013_special_264_a72
ER  - 
%0 Journal Article
%A Fink, Alex
%A Moci, Luca
%T Matroids over a ring
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12801/
%R 10.46298/dmtcs.12801
%G en
%F DMTCS_2013_special_264_a72
Fink, Alex; Moci, Luca. Matroids over a ring. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12801. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12801/

Cité par Sources :