Ehrhart $h^*$-vectors of hypersimplices
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

We consider the Ehrhart $h^*$-vector for the hypersimplex. It is well-known that the sum of the $h_i^*$ is the normalized volume which equals an Eulerian number. The main result is a proof of a conjecture by R. Stanley which gives an interpretation of the $h^*_i$ coefficients in terms of descents and excedances. Our proof is geometric using a careful book-keeping of a shelling of a unimodular triangulation. We generalize this result to other closely related polytopes.
@article{DMTCS_2013_special_264_a69,
     author = {Li, Nan},
     title = {Ehrhart $h^*$-vectors of hypersimplices},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.12798},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12798/}
}
TY  - JOUR
AU  - Li, Nan
TI  - Ehrhart $h^*$-vectors of hypersimplices
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12798/
DO  - 10.46298/dmtcs.12798
LA  - en
ID  - DMTCS_2013_special_264_a69
ER  - 
%0 Journal Article
%A Li, Nan
%T Ehrhart $h^*$-vectors of hypersimplices
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12798/
%R 10.46298/dmtcs.12798
%G en
%F DMTCS_2013_special_264_a69
Li, Nan. Ehrhart $h^*$-vectors of hypersimplices. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12798. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12798/

Cité par Sources :