A uniform model for Kirillov―Reshetikhin crystals
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013).

Voir la notice de l'article provenant de la source Episciences

We present a uniform construction of tensor products of one-column Kirillov–Reshetikhin (KR) crystals in all untwisted affine types, which uses a generalization of the Lakshmibai–Seshadri paths (in the theory of the Littelmann path model). This generalization is based on the graph on parabolic cosets of a Weyl group known as the parabolic quantum Bruhat graph. A related model is the so-called quantum alcove model. The proof is based on two lifts of the parabolic quantum Bruhat graph: to the Bruhat order on the affine Weyl group and to Littelmann's poset on level-zero weights. Our construction leads to a simple calculation of the energy function. It also implies the equality between a Macdonald polynomial specialized at $t=0$ and the graded character of a tensor product of KR modules.
@article{DMTCS_2013_special_264_a61,
     author = {Lenart, Cristian and Naito, Satoshi and Sagaki, Daisuke and Schilling, Anne and Shimozono, Mark},
     title = {A uniform model for {Kirillov{\textemdash}Reshetikhin} crystals},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)},
     year = {2013},
     doi = {10.46298/dmtcs.12790},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12790/}
}
TY  - JOUR
AU  - Lenart, Cristian
AU  - Naito, Satoshi
AU  - Sagaki, Daisuke
AU  - Schilling, Anne
AU  - Shimozono, Mark
TI  - A uniform model for Kirillov―Reshetikhin crystals
JO  - Discrete mathematics & theoretical computer science
PY  - 2013
VL  - DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12790/
DO  - 10.46298/dmtcs.12790
LA  - en
ID  - DMTCS_2013_special_264_a61
ER  - 
%0 Journal Article
%A Lenart, Cristian
%A Naito, Satoshi
%A Sagaki, Daisuke
%A Schilling, Anne
%A Shimozono, Mark
%T A uniform model for Kirillov―Reshetikhin crystals
%J Discrete mathematics & theoretical computer science
%D 2013
%V DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12790/
%R 10.46298/dmtcs.12790
%G en
%F DMTCS_2013_special_264_a61
Lenart, Cristian; Naito, Satoshi; Sagaki, Daisuke; Schilling, Anne; Shimozono, Mark. A uniform model for Kirillov―Reshetikhin crystals. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013) (2013). doi : 10.46298/dmtcs.12790. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12790/

Cité par Sources :