A positional statistic for 1324-avoiding permutations
Discrete mathematics & theoretical computer science, Permutation Patterns 2023, Tome 26 (2024) no. 1.

Voir la notice de l'article provenant de la source Episciences

We consider the class $S_n(1324)$ of permutations of size $n$ that avoid the pattern 1324 and examine the subset $S_n^{a\prec n}(1324)$ of elements for which $a\prec n\prec [a-1]$, $a\ge 1$. This notation means that, when written in one line notation, such a permutation must have $a$ to the left of $n$, and the elements of $\{1,\dots,a-1\}$ must all be to the right of $n$. For $n\ge 2$, we establish a connection between the subset of permutations in $S_n^{1\prec n}(1324)$ having the 1 adjacent to the $n$ (called primitives), and the set of 1324-avoiding dominoes with $n-2$ points. For $a\in\{1,2\}$, we introduce constructive algorithms and give formulas for the enumeration of $S_n^{a\prec n}(1324)$ by the position of $a$ relative to the position of $n$. For $a\ge 3$, we formulate some conjectures for the corresponding generating functions.
DOI : 10.46298/dmtcs.12629
Classification : 05A05
@article{DMTCS_2024_26_1_a7,
     author = {Gil, Juan B. and Lopez, Oscar A. and Weiner, Michael D.},
     title = {A positional statistic for 1324-avoiding permutations},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.46298/dmtcs.12629},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12629/}
}
TY  - JOUR
AU  - Gil, Juan B.
AU  - Lopez, Oscar A.
AU  - Weiner, Michael D.
TI  - A positional statistic for 1324-avoiding permutations
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12629/
DO  - 10.46298/dmtcs.12629
LA  - en
ID  - DMTCS_2024_26_1_a7
ER  - 
%0 Journal Article
%A Gil, Juan B.
%A Lopez, Oscar A.
%A Weiner, Michael D.
%T A positional statistic for 1324-avoiding permutations
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12629/
%R 10.46298/dmtcs.12629
%G en
%F DMTCS_2024_26_1_a7
Gil, Juan B.; Lopez, Oscar A.; Weiner, Michael D. A positional statistic for 1324-avoiding permutations. Discrete mathematics & theoretical computer science, Permutation Patterns 2023, Tome 26 (2024) no. 1. doi : 10.46298/dmtcs.12629. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12629/

Cité par Sources :