An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2
Discrete mathematics & theoretical computer science, Tome 16 (2014) no. 1.

Voir la notice de l'article provenant de la source Episciences

Automata, Logic and Semantics
@article{DMTCS_2014_16_1_a5,
     author = {Leroy, Julien},
     title = {An {S-adic} characterization of minimal subshifts with first difference of complexity 1 \ensuremath{\leq} p(n+1) - p(n) \ensuremath{\leq} 2},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2014},
     doi = {10.46298/dmtcs.1249},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1249/}
}
TY  - JOUR
AU  - Leroy, Julien
TI  - An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2
JO  - Discrete mathematics & theoretical computer science
PY  - 2014
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1249/
DO  - 10.46298/dmtcs.1249
LA  - en
ID  - DMTCS_2014_16_1_a5
ER  - 
%0 Journal Article
%A Leroy, Julien
%T An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2
%J Discrete mathematics & theoretical computer science
%D 2014
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1249/
%R 10.46298/dmtcs.1249
%G en
%F DMTCS_2014_16_1_a5
Leroy, Julien. An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2. Discrete mathematics & theoretical computer science, Tome 16 (2014) no. 1. doi : 10.46298/dmtcs.1249. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.1249/

Cité par Sources :