Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2024_26_1_a1, author = {Godbole, Anant and Swickheimer, Hannah}, title = {An {Alternative} {Proof} for the {Expected} {Number} of {Distinct} {Consecutive} {Patterns} in a {Random} {Permutation}}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2024}, doi = {10.46298/dmtcs.12458}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12458/} }
TY - JOUR AU - Godbole, Anant AU - Swickheimer, Hannah TI - An Alternative Proof for the Expected Number of Distinct Consecutive Patterns in a Random Permutation JO - Discrete mathematics & theoretical computer science PY - 2024 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12458/ DO - 10.46298/dmtcs.12458 LA - en ID - DMTCS_2024_26_1_a1 ER -
%0 Journal Article %A Godbole, Anant %A Swickheimer, Hannah %T An Alternative Proof for the Expected Number of Distinct Consecutive Patterns in a Random Permutation %J Discrete mathematics & theoretical computer science %D 2024 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12458/ %R 10.46298/dmtcs.12458 %G en %F DMTCS_2024_26_1_a1
Godbole, Anant; Swickheimer, Hannah. An Alternative Proof for the Expected Number of Distinct Consecutive Patterns in a Random Permutation. Discrete mathematics & theoretical computer science, Permutation Patterns 2023, Tome 26 (2024) no. 1. doi : 10.46298/dmtcs.12458. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12458/
Cité par Sources :