An Alternative Proof for the Expected Number of Distinct Consecutive Patterns in a Random Permutation
Discrete mathematics & theoretical computer science, Permutation Patterns 2023, Tome 26 (2024) no. 1.

Voir la notice de l'article provenant de la source Episciences

Let $\pi_n$ be a uniformly chosen random permutation on $[n]$. Using an analysis of the probability that two overlapping consecutive $k$-permutations are order isomorphic, the authors of a recent paper showed that the expected number of distinct consecutive patterns of all lengths $k\in\{1,2,\ldots,n\}$ in $\pi_n$ is $\frac{n^2}{2}(1-o(1))$ as $n\to\infty$. This exhibited the fact that random permutations pack consecutive patterns near-perfectly. We use entirely different methods, namely the Stein-Chen method of Poisson approximation, to reprove and slightly improve their result.
DOI : 10.46298/dmtcs.12458
Classification : 05A05
@article{DMTCS_2024_26_1_a1,
     author = {Godbole, Anant and Swickheimer, Hannah},
     title = {An {Alternative} {Proof} for the {Expected} {Number} of {Distinct} {Consecutive} {Patterns} in a {Random} {Permutation}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.46298/dmtcs.12458},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12458/}
}
TY  - JOUR
AU  - Godbole, Anant
AU  - Swickheimer, Hannah
TI  - An Alternative Proof for the Expected Number of Distinct Consecutive Patterns in a Random Permutation
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12458/
DO  - 10.46298/dmtcs.12458
LA  - en
ID  - DMTCS_2024_26_1_a1
ER  - 
%0 Journal Article
%A Godbole, Anant
%A Swickheimer, Hannah
%T An Alternative Proof for the Expected Number of Distinct Consecutive Patterns in a Random Permutation
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12458/
%R 10.46298/dmtcs.12458
%G en
%F DMTCS_2024_26_1_a1
Godbole, Anant; Swickheimer, Hannah. An Alternative Proof for the Expected Number of Distinct Consecutive Patterns in a Random Permutation. Discrete mathematics & theoretical computer science, Permutation Patterns 2023, Tome 26 (2024) no. 1. doi : 10.46298/dmtcs.12458. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12458/

Cité par Sources :