Zero-sum partitions of Abelian groups and their applications to magic- and antimagic-type labelings
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3.

Voir la notice de l'article provenant de la source Episciences

The following problem has been known since the 80s. Let $\Gamma$ be an Abelian group of order $m$ (denoted $|\Gamma|=m$), and let $t$ and $\{m_i\}_{i=1}^{t}$, be positive integers such that $\sum_{i=1}^t m_i=m-1$. Determine when $\Gamma^*=\Gamma\setminus\{0\}$, the set of non-zero elements of $\Gamma$, can be partitioned into disjoint subsets $\{S_i\}_{i=1}^{t}$ such that $|S_i|=m_i$ and $\sum_{s\in S_i}s=0$ for every $1 \leq i \leq t$. Such a subset partition is called a \textit{zero-sum partition}. $|I(\Gamma)|\neq 1$, where $I(\Gamma)$ is the set of involutions in $\Gamma$, is a necessary condition for the existence of zero-sum partitions. In this paper, we show that the additional condition of $m_i\geq 4$ for every $1 \leq i \leq t$, is sufficient. Moreover, we present some applications of zero-sum partitions to magic- and antimagic-type labelings of graphs.
DOI : 10.46298/dmtcs.12361
Classification : 05C25, 05C78, 05E16, 20K01
@article{DMTCS_2024_26_3_a10,
     author = {Cichacz, Sylwia and Suchan, Karol},
     title = {Zero-sum partitions of {Abelian} groups and their applications to magic- and antimagic-type labelings},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     doi = {10.46298/dmtcs.12361},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12361/}
}
TY  - JOUR
AU  - Cichacz, Sylwia
AU  - Suchan, Karol
TI  - Zero-sum partitions of Abelian groups and their applications to magic- and antimagic-type labelings
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12361/
DO  - 10.46298/dmtcs.12361
LA  - en
ID  - DMTCS_2024_26_3_a10
ER  - 
%0 Journal Article
%A Cichacz, Sylwia
%A Suchan, Karol
%T Zero-sum partitions of Abelian groups and their applications to magic- and antimagic-type labelings
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12361/
%R 10.46298/dmtcs.12361
%G en
%F DMTCS_2024_26_3_a10
Cichacz, Sylwia; Suchan, Karol. Zero-sum partitions of Abelian groups and their applications to magic- and antimagic-type labelings. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3. doi : 10.46298/dmtcs.12361. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.12361/

Cité par Sources :