A logical limit law for $231$-avoiding permutations
Discrete mathematics & theoretical computer science, Permutation Patterns 2023, Tome 26 (2024) no. 1.

Voir la notice de l'article provenant de la source Episciences

We prove that the class of 231-avoiding permutations satisfies a logical limit law, i.e. that for any first-order sentence $\Psi$, in the language of two total orders, the probability $p_{n,\Psi}$ that a uniform random 231-avoiding permutation of size $n$ satisfies $\Psi$ admits a limit as $n$ is large. Moreover, we establish two further results about the behavior and value of $p_{n,\Psi}$: (i) it is either bounded away from $0$, or decays exponentially fast; (ii) the set of possible limits is dense in $[0,1]$. Our tools come mainly from analytic combinatorics and singularity analysis.
DOI : 10.46298/dmtcs.11751
Classification : 05A05
@article{DMTCS_2024_26_1_a0,
     author = {Albert, Michael and Bouvel, Mathilde and F\'eray, Valentin and Noy, Marc},
     title = {A logical limit law for $231$-avoiding permutations},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.46298/dmtcs.11751},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11751/}
}
TY  - JOUR
AU  - Albert, Michael
AU  - Bouvel, Mathilde
AU  - Féray, Valentin
AU  - Noy, Marc
TI  - A logical limit law for $231$-avoiding permutations
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11751/
DO  - 10.46298/dmtcs.11751
LA  - en
ID  - DMTCS_2024_26_1_a0
ER  - 
%0 Journal Article
%A Albert, Michael
%A Bouvel, Mathilde
%A Féray, Valentin
%A Noy, Marc
%T A logical limit law for $231$-avoiding permutations
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11751/
%R 10.46298/dmtcs.11751
%G en
%F DMTCS_2024_26_1_a0
Albert, Michael; Bouvel, Mathilde; Féray, Valentin; Noy, Marc. A logical limit law for $231$-avoiding permutations. Discrete mathematics & theoretical computer science, Permutation Patterns 2023, Tome 26 (2024) no. 1. doi : 10.46298/dmtcs.11751. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11751/

Cité par Sources :