A note on removable edges in near-bricks
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

An edge $e$ of a matching covered graph $G$ is removable if $G-e$ is also matching covered. Carvalho, Lucchesi, and Murty showed that every brick $G$ different from $K_4$ and $\overline{C_6}$ has at least $\Delta-2$ removable edges, where $\Delta$ is the maximum degree of $G$. In this paper, we generalize the result to irreducible near-bricks, where a graph is irreducible if it contains no single ear of length three or more.
DOI : 10.46298/dmtcs.11747
Classification : 05C70
@article{DMTCS_2024_26_2_a5,
     author = {Wu, Deyu and Zhang, Yipei and Wang, Xiumei},
     title = {A note on removable edges in near-bricks},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.46298/dmtcs.11747},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11747/}
}
TY  - JOUR
AU  - Wu, Deyu
AU  - Zhang, Yipei
AU  - Wang, Xiumei
TI  - A note on removable edges in near-bricks
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11747/
DO  - 10.46298/dmtcs.11747
LA  - en
ID  - DMTCS_2024_26_2_a5
ER  - 
%0 Journal Article
%A Wu, Deyu
%A Zhang, Yipei
%A Wang, Xiumei
%T A note on removable edges in near-bricks
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11747/
%R 10.46298/dmtcs.11747
%G en
%F DMTCS_2024_26_2_a5
Wu, Deyu; Zhang, Yipei; Wang, Xiumei. A note on removable edges in near-bricks. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2. doi : 10.46298/dmtcs.11747. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11747/

Cité par Sources :