On the $\operatorname{rix}$ statistic and valley-hopping
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

This paper studies the relationship between the modified Foata$\unicode{x2013}$Strehl action (a.k.a. valley-hopping)$\unicode{x2014}$a group action on permutations used to demonstrate the $\gamma$-positivity of the Eulerian polynomials$\unicode{x2014}$and the number of rixed points $\operatorname{rix}$$\unicode{x2014}$a recursively-defined permutation statistic introduced by Lin in the context of an equidistribution problem. We give a linear-time iterative algorithm for computing the set of rixed points, and prove that the $\operatorname{rix}$ statistic is homomesic under valley-hopping. We also demonstrate that a bijection $\Phi$ introduced by Lin and Zeng in the study of the $\operatorname{rix}$ statistic sends orbits of the valley-hopping action to orbits of a cyclic version of valley-hopping, which implies that the number of fixed points $\operatorname{fix}$ is homomesic under cyclic valley-hopping.
DOI : 10.46298/dmtcs.11553
Classification : 05A05, 05A15, 05E18
@article{DMTCS_2024_26_2_a1,
     author = {Lafreni\`ere, Nadia and Zhuang, Yan},
     title = {On the $\operatorname{rix}$ statistic and valley-hopping},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.46298/dmtcs.11553},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11553/}
}
TY  - JOUR
AU  - Lafrenière, Nadia
AU  - Zhuang, Yan
TI  - On the $\operatorname{rix}$ statistic and valley-hopping
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11553/
DO  - 10.46298/dmtcs.11553
LA  - en
ID  - DMTCS_2024_26_2_a1
ER  - 
%0 Journal Article
%A Lafrenière, Nadia
%A Zhuang, Yan
%T On the $\operatorname{rix}$ statistic and valley-hopping
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11553/
%R 10.46298/dmtcs.11553
%G en
%F DMTCS_2024_26_2_a1
Lafrenière, Nadia; Zhuang, Yan. On the $\operatorname{rix}$ statistic and valley-hopping. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2. doi : 10.46298/dmtcs.11553. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11553/

Cité par Sources :