$2$-polarity and algorithmic aspects of polarity variants on cograph superclasses
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3.

Voir la notice de l'article provenant de la source Episciences

A graph $G$ is said to be an $(s, k)$-polar graph if its vertex set admits a partition $(A, B)$ such that $A$ and $B$ induce, respectively, a complete $s$-partite graph and the disjoint union of at most $k$ complete graphs. Polar graphs and monopolar graphs are defined as $(\infty, \infty)$- and $(1, \infty)$-polar graphs, respectively, and unipolar graphs are those graphs with a polar partition $(A, B)$ such that $A$ is a clique. The problems of deciding whether an arbitrary graph is a polar graph or a monopolar graph are known to be NP-complete. In contrast, deciding whether a graph is a unipolar graph can be done in polynomial time. In this work we prove that the three previous problems can be solved in linear time on the classes of $P_4$-sparse and $P_4$-extendible graphs, generalizing analogous results previously known for cographs. Additionally, we provide finite forbidden subgraph characterizations for $(2,2)$-polar graphs on $P_4$-sparse and $P_4$-extendible graphs, also generalizing analogous results recently obtained for the class of cographs.
DOI : 10.46298/dmtcs.11479
Classification : 05C15, 05C75, 05C85, 68R10
@article{DMTCS_2024_26_3_a7,
     author = {Contreras-Mendoza, Fernando Esteban and Hern\'andez-Cruz, C\'esar},
     title = {$2$-polarity and algorithmic aspects of polarity variants on cograph superclasses},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     doi = {10.46298/dmtcs.11479},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11479/}
}
TY  - JOUR
AU  - Contreras-Mendoza, Fernando Esteban
AU  - Hernández-Cruz, César
TI  - $2$-polarity and algorithmic aspects of polarity variants on cograph superclasses
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11479/
DO  - 10.46298/dmtcs.11479
LA  - en
ID  - DMTCS_2024_26_3_a7
ER  - 
%0 Journal Article
%A Contreras-Mendoza, Fernando Esteban
%A Hernández-Cruz, César
%T $2$-polarity and algorithmic aspects of polarity variants on cograph superclasses
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11479/
%R 10.46298/dmtcs.11479
%G en
%F DMTCS_2024_26_3_a7
Contreras-Mendoza, Fernando Esteban; Hernández-Cruz, César. $2$-polarity and algorithmic aspects of polarity variants on cograph superclasses. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3. doi : 10.46298/dmtcs.11479. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11479/

Cité par Sources :