The bipartite Ramsey numbers $BR(C_8, C_{2n})$
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

For the given bipartite graphs $G_1,G_2,\ldots,G_t$, the multicolor bipartite Ramsey number $BR(G_1,G_2,\ldots,G_t)$ is the smallest positive integer $b$ such that any $t$-edge-coloring of $K_{b,b}$ contains a monochromatic subgraph isomorphic to $G_i$, colored with the $i$th color for some $1\leq i\leq t$. We compute the exact values of the bipartite Ramsey numbers $BR(C_8,C_{2n})$ for $n\geq2$.
DOI : 10.46298/dmtcs.11207
Classification : 05C15, 05C55, 05D10
@article{DMTCS_2024_25_2_a18,
     author = {Gholami, Mostafa and Rowshan, Yaser},
     title = {The bipartite {Ramsey} numbers $BR(C_8, C_{2n})$},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023-2024},
     doi = {10.46298/dmtcs.11207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11207/}
}
TY  - JOUR
AU  - Gholami, Mostafa
AU  - Rowshan, Yaser
TI  - The bipartite Ramsey numbers $BR(C_8, C_{2n})$
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11207/
DO  - 10.46298/dmtcs.11207
LA  - en
ID  - DMTCS_2024_25_2_a18
ER  - 
%0 Journal Article
%A Gholami, Mostafa
%A Rowshan, Yaser
%T The bipartite Ramsey numbers $BR(C_8, C_{2n})$
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11207/
%R 10.46298/dmtcs.11207
%G en
%F DMTCS_2024_25_2_a18
Gholami, Mostafa; Rowshan, Yaser. The bipartite Ramsey numbers $BR(C_8, C_{2n})$. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2. doi : 10.46298/dmtcs.11207. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11207/

Cité par Sources :