On harmonious coloring of hypergraphs
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

A harmonious coloring of a $k$-uniform hypergraph $H$ is a vertex coloring such that no two vertices in the same edge have the same color, and each $k$-element subset of colors appears on at most one edge. The harmonious number $h(H)$ is the least number of colors needed for such a coloring. The paper contains a new proof of the upper bound $h(H)=O(\sqrt[k]{k!m})$ on the harmonious number of hypergraphs of maximum degree $\Delta$ with $m$ edges. We use the local cut lemma of A. Bernshteyn.
DOI : 10.46298/dmtcs.11101
Classification : 05C15, 05C65
@article{DMTCS_2024_26_2_a11,
     author = {Czerwi\'nski, Sebastian},
     title = {On harmonious coloring of hypergraphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.46298/dmtcs.11101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11101/}
}
TY  - JOUR
AU  - Czerwiński, Sebastian
TI  - On harmonious coloring of hypergraphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11101/
DO  - 10.46298/dmtcs.11101
LA  - en
ID  - DMTCS_2024_26_2_a11
ER  - 
%0 Journal Article
%A Czerwiński, Sebastian
%T On harmonious coloring of hypergraphs
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11101/
%R 10.46298/dmtcs.11101
%G en
%F DMTCS_2024_26_2_a11
Czerwiński, Sebastian. On harmonious coloring of hypergraphs. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2. doi : 10.46298/dmtcs.11101. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11101/

Cité par Sources :