Composing dynamic programming tree-decomposition-based algorithms
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

Given two integers $\ell$ and $p$ as well as $\ell$ graph classes $\mathcal{H}_1,\ldots,\mathcal{H}_\ell$, the problems $\mathsf{GraphPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell,p)$, \break $\mathsf{VertPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell)$, and $\mathsf{EdgePart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell)$ ask, given graph $G$ as input, whether $V(G)$, $V(G)$, $E(G)$ respectively can be partitioned into $\ell$ sets $S_1, \ldots, S_\ell$ such that, for each $i$ between $1$ and $\ell$, $G[S_i] \in \mathcal{H}_i$, $G[S_i] \in \mathcal{H}_i$, $(V(G),S_i) \in \mathcal{H}_i$ respectively. Moreover in $\mathsf{GraphPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell,p)$, we request that the number of edges with endpoints in different sets of the partition is bounded by $p$. We show that if there exist dynamic programming tree-decomposition-based algorithms for recognizing the graph classes $\mathcal{H}_i$, for each $i$, then we can constructively create a dynamic programming tree-decomposition-based algorithms for $\mathsf{GraphPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell,p)$, $\mathsf{VertPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell)$, and $\mathsf{EdgePart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell)$. We apply this approach to known problems. For well-studied problems, like VERTEX COVER and GRAPH $q$-COLORING, we obtain running times that are comparable to those of the best known problem-specific algorithms. For an exotic problem from bioinformatics, called DISPLAYGRAPH, this approach improves the known algorithm parameterized by treewidth.
DOI : 10.46298/dmtcs.11069
Classification : 05C70, 90C39
@article{DMTCS_2024_26_2_a3,
     author = {Baste, Julien},
     title = {Composing dynamic programming tree-decomposition-based algorithms},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.46298/dmtcs.11069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11069/}
}
TY  - JOUR
AU  - Baste, Julien
TI  - Composing dynamic programming tree-decomposition-based algorithms
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11069/
DO  - 10.46298/dmtcs.11069
LA  - en
ID  - DMTCS_2024_26_2_a3
ER  - 
%0 Journal Article
%A Baste, Julien
%T Composing dynamic programming tree-decomposition-based algorithms
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11069/
%R 10.46298/dmtcs.11069
%G en
%F DMTCS_2024_26_2_a3
Baste, Julien. Composing dynamic programming tree-decomposition-based algorithms. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2. doi : 10.46298/dmtcs.11069. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.11069/

Cité par Sources :