Bijective proof of a conjecture on unit interval posets
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

In a recent preprint, Matherne, Morales and Selover conjectured that two different representations of unit interval posets are related by the famous zeta map in $q,t$-Catalan combinatorics. This conjecture was proved recently by G\'elinas, Segovia and Thomas using induction. In this short note, we provide a bijective proof of the same conjecture with a reformulation of the zeta map using left-aligned colored trees, first proposed in the study of parabolic Tamari lattices.
DOI : 10.46298/dmtcs.10837
Classification : 05C05, 05C10, 05C38
@article{DMTCS_2024_26_2_a0,
     author = {Fang, Wenjie},
     title = {Bijective proof of a conjecture on unit interval posets},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.46298/dmtcs.10837},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10837/}
}
TY  - JOUR
AU  - Fang, Wenjie
TI  - Bijective proof of a conjecture on unit interval posets
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10837/
DO  - 10.46298/dmtcs.10837
LA  - en
ID  - DMTCS_2024_26_2_a0
ER  - 
%0 Journal Article
%A Fang, Wenjie
%T Bijective proof of a conjecture on unit interval posets
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10837/
%R 10.46298/dmtcs.10837
%G en
%F DMTCS_2024_26_2_a0
Fang, Wenjie. Bijective proof of a conjecture on unit interval posets. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 2. doi : 10.46298/dmtcs.10837. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10837/

Cité par Sources :