Ammann Bars for Octagonal Tilings
Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3.

Voir la notice de l'article provenant de la source Episciences

Ammann bars are formed by segments (decorations) on the tiles of a tiling such that forming straight lines with them while tiling forces non-periodicity. Only a few cases are known, starting with Robert Ammann's observations on Penrose tiles, but there is no general explanation or construction. In this article we propose a general method for cut and project tilings based on the notion of subperiods and we illustrate it with an aperiodic set of 36 decorated prototiles related to what we called Cyrenaic tilings.
@article{DMTCS_2024_26_3_a11,
     author = {Fernique, Thomas and Porrier, Carole},
     title = {Ammann {Bars} for {Octagonal} {Tilings}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     doi = {10.46298/dmtcs.10764},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10764/}
}
TY  - JOUR
AU  - Fernique, Thomas
AU  - Porrier, Carole
TI  - Ammann Bars for Octagonal Tilings
JO  - Discrete mathematics & theoretical computer science
PY  - 2024
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10764/
DO  - 10.46298/dmtcs.10764
LA  - en
ID  - DMTCS_2024_26_3_a11
ER  - 
%0 Journal Article
%A Fernique, Thomas
%A Porrier, Carole
%T Ammann Bars for Octagonal Tilings
%J Discrete mathematics & theoretical computer science
%D 2024
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10764/
%R 10.46298/dmtcs.10764
%G en
%F DMTCS_2024_26_3_a11
Fernique, Thomas; Porrier, Carole. Ammann Bars for Octagonal Tilings. Discrete mathematics & theoretical computer science, Tome 26 (2024) no. 3. doi : 10.46298/dmtcs.10764. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10764/

Cité par Sources :