Maker-Breaker domination game on trees when Staller wins
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

In the Maker-Breaker domination game played on a graph $G$, Dominator's goal is to select a dominating set and Staller's goal is to claim a closed neighborhood of some vertex. We study the cases when Staller can win the game. If Dominator (resp., Staller) starts the game, then $\gamma_{\rm SMB}(G)$ (resp., $\gamma_{\rm SMB}'(G)$) denotes the minimum number of moves Staller needs to win. For every positive integer $k$, trees $T$ with $\gamma_{\rm SMB}'(T)=k$ are characterized and a general upper bound on $\gamma_{\rm SMB}'$ is proved. Let $S = S(n_1,\dots, n_\ell)$ be the subdivided star obtained from the star with $\ell$ edges by subdividing its edges $n_1-1, \ldots, n_\ell-1$ times, respectively. Then $\gamma_{\rm SMB}'(S)$ is determined in all the cases except when $\ell\ge 4$ and each $n_i$ is even. The simplest formula is obtained when there are at least two odd $n_i$s. If $n_1$ and $n_2$ are the two smallest such numbers, then $\gamma_{\rm SMB}'(S(n_1,\dots, n_\ell))=\lceil \log_2(n_1+n_2+1)\rceil$. For caterpillars, exact formulas for $\gamma_{\rm SMB}$ and for $\gamma_{\rm SMB}'$ are established.
DOI : 10.46298/dmtcs.10515
Classification : 05C57, 05C69, 91A43
@article{DMTCS_2024_25_2_a2,
     author = {Bujt\'as, Csilla and Dokyeesun, Pakanun and Klav\v{z}ar, Sandi},
     title = {Maker-Breaker domination game on trees when {Staller} wins},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023-2024},
     doi = {10.46298/dmtcs.10515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10515/}
}
TY  - JOUR
AU  - Bujtás, Csilla
AU  - Dokyeesun, Pakanun
AU  - Klavžar, Sandi
TI  - Maker-Breaker domination game on trees when Staller wins
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10515/
DO  - 10.46298/dmtcs.10515
LA  - en
ID  - DMTCS_2024_25_2_a2
ER  - 
%0 Journal Article
%A Bujtás, Csilla
%A Dokyeesun, Pakanun
%A Klavžar, Sandi
%T Maker-Breaker domination game on trees when Staller wins
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10515/
%R 10.46298/dmtcs.10515
%G en
%F DMTCS_2024_25_2_a2
Bujtás, Csilla; Dokyeesun, Pakanun; Klavžar, Sandi. Maker-Breaker domination game on trees when Staller wins. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2. doi : 10.46298/dmtcs.10515. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10515/

Cité par Sources :