The Variance and the Asymptotic Distribution of the Length of Longest $k$-alternating Subsequences
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 1.

Voir la notice de l'article provenant de la source Episciences

We obtain an explicit formula for the variance of the number of $k$-peaks in a uniformly random permutation. This is then used to obtain an asymptotic formula for the variance of the length of longest $k$-alternating subsequence in random permutations. Also a central limit is proved for the latter statistic.
DOI : 10.46298/dmtcs.10296
Classification : 05A05, 05A15, 60C05, 60F05
@article{DMTCS_2023_25_1_a11,
     author = {\c{C}i\c{c}eksiz, Altar and Demirci, Yunus Emre and I\c{s}lak, \"Umit},
     title = {The {Variance} and the {Asymptotic} {Distribution} of the {Length} of {Longest} $k$-alternating {Subsequences}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023-2024},
     doi = {10.46298/dmtcs.10296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10296/}
}
TY  - JOUR
AU  - Çiçeksiz, Altar
AU  - Demirci, Yunus Emre
AU  - Işlak, Ümit
TI  - The Variance and the Asymptotic Distribution of the Length of Longest $k$-alternating Subsequences
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10296/
DO  - 10.46298/dmtcs.10296
LA  - en
ID  - DMTCS_2023_25_1_a11
ER  - 
%0 Journal Article
%A Çiçeksiz, Altar
%A Demirci, Yunus Emre
%A Işlak, Ümit
%T The Variance and the Asymptotic Distribution of the Length of Longest $k$-alternating Subsequences
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10296/
%R 10.46298/dmtcs.10296
%G en
%F DMTCS_2023_25_1_a11
Çiçeksiz, Altar; Demirci, Yunus Emre; Işlak, Ümit. The Variance and the Asymptotic Distribution of the Length of Longest $k$-alternating Subsequences. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 1. doi : 10.46298/dmtcs.10296. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10296/

Cité par Sources :