Minimal toughness in special graph classes
Discrete mathematics & theoretical computer science, special issue ICGT'22, Tome 25 (2023-2024) no. 3.

Voir la notice de l'article provenant de la source Episciences

Let $t$ be a positive real number. A graph is called $t$-tough if the removal of any vertex set $S$ that disconnects the graph leaves at most $|S|/t$ components, and all graphs are considered 0-tough. The toughness of a graph is the largest $t$ for which the graph is $t$-tough, whereby the toughness of complete graphs is defined as infinity. A graph is minimally $t$-tough if the toughness of the graph is $t$, and the deletion of any edge from the graph decreases the toughness. In this paper, we investigate the minimum degree and the recognizability of minimally $t$-tough graphs in the classes of chordal graphs, split graphs, claw-free graphs, and $2K_2$-free graphs.
DOI : 10.46298/dmtcs.10180
Classification : 05C35, 05C75
@article{DMTCS_2024_25_3_a0,
     author = {Katona, Gyula Y. and Varga, Kitti},
     title = {Minimal toughness in special graph classes},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2023-2024},
     doi = {10.46298/dmtcs.10180},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10180/}
}
TY  - JOUR
AU  - Katona, Gyula Y.
AU  - Varga, Kitti
TI  - Minimal toughness in special graph classes
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10180/
DO  - 10.46298/dmtcs.10180
LA  - en
ID  - DMTCS_2024_25_3_a0
ER  - 
%0 Journal Article
%A Katona, Gyula Y.
%A Varga, Kitti
%T Minimal toughness in special graph classes
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10180/
%R 10.46298/dmtcs.10180
%G en
%F DMTCS_2024_25_3_a0
Katona, Gyula Y.; Varga, Kitti. Minimal toughness in special graph classes. Discrete mathematics & theoretical computer science, special issue ICGT'22, Tome 25 (2023-2024) no. 3. doi : 10.46298/dmtcs.10180. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10180/

Cité par Sources :