Embedding phylogenetic trees in networks of low treewidth
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2.

Voir la notice de l'article provenant de la source Episciences

Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called \textsc{Tree Containment}, arises when validating networks constructed by phylogenetic inference methods.We present the first algorithm for (rooted) \textsc{Tree Containment} using the treewidth $t$ of the input network $N$ as parameter, showing that the problem can be solved in $2^{O(t^2)}\cdot|N|$ time and space.
DOI : 10.46298/dmtcs.10116
Classification : 05C05, 05C82, 68Q25
@article{DMTCS_2024_25_2_a7,
     author = {van Iersel, Leo and Jones, Mark and Weller, Mathias},
     title = {Embedding phylogenetic trees in networks of low treewidth},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2023-2024},
     doi = {10.46298/dmtcs.10116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10116/}
}
TY  - JOUR
AU  - van Iersel, Leo
AU  - Jones, Mark
AU  - Weller, Mathias
TI  - Embedding phylogenetic trees in networks of low treewidth
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10116/
DO  - 10.46298/dmtcs.10116
LA  - en
ID  - DMTCS_2024_25_2_a7
ER  - 
%0 Journal Article
%A van Iersel, Leo
%A Jones, Mark
%A Weller, Mathias
%T Embedding phylogenetic trees in networks of low treewidth
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10116/
%R 10.46298/dmtcs.10116
%G en
%F DMTCS_2024_25_2_a7
van Iersel, Leo; Jones, Mark; Weller, Mathias. Embedding phylogenetic trees in networks of low treewidth. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 2. doi : 10.46298/dmtcs.10116. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10116/

Cité par Sources :