Distinct Angles and Angle Chains in Three Dimensions
Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 1.

Voir la notice de l'article provenant de la source Episciences

In 1946, Erd\H{o}s posed the distinct distance problem, which seeks to find the minimum number of distinct distances between pairs of points selected from any configuration of $n$ points in the plane. The problem has since been explored along with many variants, including ones that extend it into higher dimensions. Less studied but no less intriguing is Erd\H{o}s' distinct angle problem, which seeks to find point configurations in the plane that minimize the number of distinct angles. In their recent paper "Distinct Angles in General Position," Fleischmann, Konyagin, Miller, Palsson, Pesikoff, and Wolf use a logarithmic spiral to establish an upper bound of $O(n^2)$ on the minimum number of distinct angles in the plane in general position, which prohibits three points on any line or four on any circle. We consider the question of distinct angles in three dimensions and provide bounds on the minimum number of distinct angles in general position in this setting. We focus on pinned variants of the question, and we examine explicit constructions of point configurations in $\mathbb{R}^3$ which use self-similarity to minimize the number of distinct angles. Furthermore, we study a variant of the distinct angles question regarding distinct angle chains and provide bounds on the minimum number of distinct chains in $\mathbb{R}^2$ and $\mathbb{R}^3$.
DOI : 10.46298/dmtcs.10037
Classification : 52C10
@article{DMTCS_2023_25_1_a0,
     author = {Ascoli, Ruben and Betti, Livia and Duke, Jacob Lehmann and Liu, Xuyan and Milgrim, Wyatt and Miller, Steven J. and Palsson, Eyvindur A. and Acosta, Francisco Romero and Iannuzzelli, Santiago Velazquez},
     title = {Distinct {Angles} and {Angle} {Chains} in {Three} {Dimensions}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023-2024},
     doi = {10.46298/dmtcs.10037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10037/}
}
TY  - JOUR
AU  - Ascoli, Ruben
AU  - Betti, Livia
AU  - Duke, Jacob Lehmann
AU  - Liu, Xuyan
AU  - Milgrim, Wyatt
AU  - Miller, Steven J.
AU  - Palsson, Eyvindur A.
AU  - Acosta, Francisco Romero
AU  - Iannuzzelli, Santiago Velazquez
TI  - Distinct Angles and Angle Chains in Three Dimensions
JO  - Discrete mathematics & theoretical computer science
PY  - 2023-2024
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10037/
DO  - 10.46298/dmtcs.10037
LA  - en
ID  - DMTCS_2023_25_1_a0
ER  - 
%0 Journal Article
%A Ascoli, Ruben
%A Betti, Livia
%A Duke, Jacob Lehmann
%A Liu, Xuyan
%A Milgrim, Wyatt
%A Miller, Steven J.
%A Palsson, Eyvindur A.
%A Acosta, Francisco Romero
%A Iannuzzelli, Santiago Velazquez
%T Distinct Angles and Angle Chains in Three Dimensions
%J Discrete mathematics & theoretical computer science
%D 2023-2024
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10037/
%R 10.46298/dmtcs.10037
%G en
%F DMTCS_2023_25_1_a0
Ascoli, Ruben; Betti, Livia; Duke, Jacob Lehmann; Liu, Xuyan; Milgrim, Wyatt; Miller, Steven J.; Palsson, Eyvindur A.; Acosta, Francisco Romero; Iannuzzelli, Santiago Velazquez. Distinct Angles and Angle Chains in Three Dimensions. Discrete mathematics & theoretical computer science, Tome 25 (2023-2024) no. 1. doi : 10.46298/dmtcs.10037. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.10037/

Cité par Sources :