Čech complexes of hypercube graphs
Homology, homotopy, and applications, Tome 27 (2025) no. 1, pp. 83-105.

Voir la notice de l'article provenant de la source International Press of Boston

A Čech complex of a finite simple graph $G$ is a nerve complex of balls in the graph, with one ball centered at each vertex. More precisely, the Cech complex $\mathcal{N}(G, r)$ is the nerve of all closed balls of radius $\frac{r}{2}$ centered at vertices of $G$, where these balls are drawn in the geometric realization of the graph $G$ (equipped with the shortest path metric). The simplicial complex $\mathcal{N}(G, r)$ is equal to the graph $G$ when $r=1$, and homotopy equivalent to the graph $G$ when $r$ is smaller than half the length of the shortest cycle in $G$. For higher values of $r$, the topology of $\mathcal{N}(G, r)$ is not well-understood. We consider the $n$-dimensional hypercube graphs $\mathbb{I}_n$ with $2^n$ vertices. Our main results are as follows. First, when $r=2$, we show that the Čech complex $\mathcal{N}\left(\mathbb{I}_n, 2\right)$ is homotopy equivalent to a wedge of 2 spheres for all $n \geqslant 1$, and we count the number of 2 -spheres appearing in this wedge sum. Second, when $r=3$, we show that $\mathcal{N}\left(\mathbb{I}_n, 3\right)$ is homotopy equivalent to a simplicial complex of dimension at most 4 , and that for $n \geqslant 4$ the reduced homology of $\mathcal{N}\left(\mathbb{I}_n, 3\right)$ is nonzero in dimensions 3 and 4 , and zero in all other dimensions. Finally, we show that for all $n \geqslant 1$ and $r \geqslant 0$, the inclusion $\mathcal{N}\left(\mathbb{I}_n, r\right) \hookrightarrow \mathcal{N}\left(\mathbb{I}_n, r+2\right)$ is null-homotopic, providing a bound on the length of bars in the persistent homology of Čech complexes of hypercube graphs.
DOI : 10.4310/HHA.2025.v27.n1.a6
Classification : |55N31, 55U10, 05E45
Keywords: Čech complex, persistent homology, collapsibility, hypercube
@article{HHA_2025_27_1_a5,
     author = {Henry Adams and Samir Shukla and Anurag Singh},
     title = {\v{C}ech complexes of hypercube graphs},
     journal = {Homology, homotopy, and applications},
     pages = {83--105},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     doi = {10.4310/HHA.2025.v27.n1.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a6/}
}
TY  - JOUR
AU  - Henry Adams
AU  - Samir Shukla
AU  - Anurag Singh
TI  - Čech complexes of hypercube graphs
JO  - Homology, homotopy, and applications
PY  - 2025
SP  - 83
EP  - 105
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a6/
DO  - 10.4310/HHA.2025.v27.n1.a6
LA  - en
ID  - HHA_2025_27_1_a5
ER  - 
%0 Journal Article
%A Henry Adams
%A Samir Shukla
%A Anurag Singh
%T Čech complexes of hypercube graphs
%J Homology, homotopy, and applications
%D 2025
%P 83-105
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a6/
%R 10.4310/HHA.2025.v27.n1.a6
%G en
%F HHA_2025_27_1_a5
Henry Adams; Samir Shukla; Anurag Singh. Čech complexes of hypercube graphs. Homology, homotopy, and applications, Tome 27 (2025) no. 1, pp. 83-105. doi : 10.4310/HHA.2025.v27.n1.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a6/

Cité par Sources :