Locally dualizable modules abound
Homology, homotopy, and applications, Tome 27 (2025) no. 1, pp. 75-82.

Voir la notice de l'article provenant de la source International Press of Boston

It is proved that given any prime ideal $\mathfrak{p}$ of height at least 2 in a countable commutative noetherian ring $A$, there are uncountably many more dualizable objects in the $\mathfrak{p}$-local $\mathfrak{p}$-torsion stratum of the derived category of $A$ than those that are obtained as retracts of images of perfect $A$-complexes. An analogous result is established dealing with the stable module category of the group algebra of a finite group having sufficient $p$-rank, over a countable field of positive characteristic $p$.
DOI : 10.4310/HHA.2025.v27.n1.a5
Classification : Primary|13D09, Secondary|18G80, 14F08
Keywords: derived category, dualizable object, stable module category, tensor triangulated category
@article{HHA_2025_27_1_a4,
     author = {Jon F. Carlson and Srikanth B. Iyengar},
     title = {Locally dualizable modules abound},
     journal = {Homology, homotopy, and applications},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     doi = {10.4310/HHA.2025.v27.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a5/}
}
TY  - JOUR
AU  - Jon F. Carlson
AU  - Srikanth B. Iyengar
TI  - Locally dualizable modules abound
JO  - Homology, homotopy, and applications
PY  - 2025
SP  - 75
EP  - 82
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a5/
DO  - 10.4310/HHA.2025.v27.n1.a5
LA  - en
ID  - HHA_2025_27_1_a4
ER  - 
%0 Journal Article
%A Jon F. Carlson
%A Srikanth B. Iyengar
%T Locally dualizable modules abound
%J Homology, homotopy, and applications
%D 2025
%P 75-82
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a5/
%R 10.4310/HHA.2025.v27.n1.a5
%G en
%F HHA_2025_27_1_a4
Jon F. Carlson; Srikanth B. Iyengar. Locally dualizable modules abound. Homology, homotopy, and applications, Tome 27 (2025) no. 1, pp. 75-82. doi : 10.4310/HHA.2025.v27.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a5/

Cité par Sources :