A $v_1$-banded vanishing line for the mod 2 Moore spectrum
Homology, homotopy, and applications, Tome 27 (2025) no. 1, pp. 29-49.

Voir la notice de l'article provenant de la source International Press of Boston

The mod 2 Moore spectrum $C(2)$ is the cofiber of the self-map $2: \mathbb{S} \rightarrow \mathbb{S}$. Building on work of Burklund, Hahn, and Senger, we prove that above a line of slope $\frac{1}{5}$, the Adams spectral sequence for $C(2)$ collapses at its $E_5$-page and characterize the surviving classes. This completes the proof of a result of Mahowald, announced in 1970, but never proven.
DOI : 10.4310/HHA.2025.v27.n1.a3
Classification : |55P42, 55Q10
Keywords: homotopy, spectrum
@article{HHA_2025_27_1_a2,
     author = {Kevin Chang},
     title = {A $v_1$-banded vanishing line for the mod 2 {Moore} spectrum},
     journal = {Homology, homotopy, and applications},
     pages = {29--49},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     doi = {10.4310/HHA.2025.v27.n1.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a3/}
}
TY  - JOUR
AU  - Kevin Chang
TI  - A $v_1$-banded vanishing line for the mod 2 Moore spectrum
JO  - Homology, homotopy, and applications
PY  - 2025
SP  - 29
EP  - 49
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a3/
DO  - 10.4310/HHA.2025.v27.n1.a3
LA  - en
ID  - HHA_2025_27_1_a2
ER  - 
%0 Journal Article
%A Kevin Chang
%T A $v_1$-banded vanishing line for the mod 2 Moore spectrum
%J Homology, homotopy, and applications
%D 2025
%P 29-49
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a3/
%R 10.4310/HHA.2025.v27.n1.a3
%G en
%F HHA_2025_27_1_a2
Kevin Chang. A $v_1$-banded vanishing line for the mod 2 Moore spectrum. Homology, homotopy, and applications, Tome 27 (2025) no. 1, pp. 29-49. doi : 10.4310/HHA.2025.v27.n1.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2025.v27.n1.a3/

Cité par Sources :