-immersions lies “between” the embeddings and the immersions. We calculate the connectivity of the layers in the homological Taylor tower for the space of
$r$
-immersions in
$\Rn$
(modulo immersions), and give conditions that guarantee that the connectivity of the maps in the tower approaches infinity as one goes up the tower. We also compare the homological tower with the homotopical tower, and show that up to degree
$2r-1$
there is a “Hurewicz isomorphism” between the first non-trivial homotopy groups of the layers of the two towers.
@article{HHA_2024_26_2_a7,
author = {Gregory Arone and Franjo \v{S}ar\v{c}evi\'c},
title = {Intrinsic convergence of the homological {Taylor} tower for $r$-immersions in $\mathbb{R}^n$},
journal = {Homology, homotopy, and applications},
pages = {163--192},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2024},
doi = {10.4310/HHA.2024.v26.n2.a8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a8/}
}
TY - JOUR
AU - Gregory Arone
AU - Franjo Šarčević
TI - Intrinsic convergence of the homological Taylor tower for $r$-immersions in $\mathbb{R}^n$
JO - Homology, homotopy, and applications
PY - 2024
SP - 163
EP - 192
VL - 26
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a8/
DO - 10.4310/HHA.2024.v26.n2.a8
LA - en
ID - HHA_2024_26_2_a7
ER -
%0 Journal Article
%A Gregory Arone
%A Franjo Šarčević
%T Intrinsic convergence of the homological Taylor tower for $r$-immersions in $\mathbb{R}^n$
%J Homology, homotopy, and applications
%D 2024
%P 163-192
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a8/
%R 10.4310/HHA.2024.v26.n2.a8
%G en
%F HHA_2024_26_2_a7
Gregory Arone; Franjo Šarčević. Intrinsic convergence of the homological Taylor tower for $r$-immersions in $\mathbb{R}^n$. Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 163-192. doi : 10.4310/HHA.2024.v26.n2.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a8/