Semi-prorepresentability of formal moduli problems and equivariant structures
Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 99-120.

Voir la notice de l'article provenant de la source International Press of Boston

We generalize the notion of semi-universality in the classical deformation problems to the context of derived deformation theories. A criterion for a formal moduli problem to be semiprorepresentable is produced. This can be seen as an analogue of Schlessinger’s conditions for a functor of Artinian rings to have a semi-universal element. We also give a sufficient condition for a semi-prorepresentable formal moduli problem to admit a $G$ equivariant structure in a sense specified below, where $G$ is a linearly reductive group. Finally, by making use of these criteria, we derive many classical results including the existence of ($G$-equivariant) formal semi-universal deformations of algebraic schemes and that of complex compact manifolds.
DOI : 10.4310/HHA.2024.v26.n2.a5
Classification : 13D10, 14B10, 14D15, 14F35
Keywords: deformation theory, moduli theory, formal moduli problem, equivariance structure
@article{HHA_2024_26_2_a4,
     author = {An-Khuong Doan},
     title = {Semi-prorepresentability of formal moduli problems and equivariant structures},
     journal = {Homology, homotopy, and applications},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n2.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a5/}
}
TY  - JOUR
AU  - An-Khuong Doan
TI  - Semi-prorepresentability of formal moduli problems and equivariant structures
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 99
EP  - 120
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a5/
DO  - 10.4310/HHA.2024.v26.n2.a5
LA  - en
ID  - HHA_2024_26_2_a4
ER  - 
%0 Journal Article
%A An-Khuong Doan
%T Semi-prorepresentability of formal moduli problems and equivariant structures
%J Homology, homotopy, and applications
%D 2024
%P 99-120
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a5/
%R 10.4310/HHA.2024.v26.n2.a5
%G en
%F HHA_2024_26_2_a4
An-Khuong Doan. Semi-prorepresentability of formal moduli problems and equivariant structures. Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 99-120. doi : 10.4310/HHA.2024.v26.n2.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a5/

Cité par Sources :