Rational circle-equivariant elliptic cohomology of CP(V)
Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 49-78.

Voir la notice de l'article provenant de la source International Press of Boston

$\def\T{\mathbb{T}}\def\CPV{\mathbb{C}P(V)}$
We prove a splitting result between the algebraic models for rational
$\T^2$
- and
$\T$
-equivariant elliptic cohomology, where
$\T$
is the circle group and
$\T^2$
is the
$2$
-torus. As an application we compute rational
$\T$
-equivariant elliptic cohomology of
$\CPV$
: the
$\T$
-space of complex lines for a finite dimensional complex
$\T$
-representation
$V$
. This is achieved by reducing the computation of
$\T$
-elliptic cohomology of
$\CPV$
to the computation of
$\T^2$
-elliptic cohomology of certain spheres of complex representations.
DOI : 10.4310/HHA.2024.v26.n2.a3
Classification : 55N34, 55N91
Keywords: equivariant elliptic cohomology, algebraic model, complex projective space
@article{HHA_2024_26_2_a2,
     author = {Matteo Barucco},
     title = {Rational circle-equivariant elliptic cohomology of {CP(V)}},
     journal = {Homology, homotopy, and applications},
     pages = {49--78},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n2.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a3/}
}
TY  - JOUR
AU  - Matteo Barucco
TI  - Rational circle-equivariant elliptic cohomology of CP(V)
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 49
EP  - 78
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a3/
DO  - 10.4310/HHA.2024.v26.n2.a3
LA  - en
ID  - HHA_2024_26_2_a2
ER  - 
%0 Journal Article
%A Matteo Barucco
%T Rational circle-equivariant elliptic cohomology of CP(V)
%J Homology, homotopy, and applications
%D 2024
%P 49-78
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a3/
%R 10.4310/HHA.2024.v26.n2.a3
%G en
%F HHA_2024_26_2_a2
Matteo Barucco. Rational circle-equivariant elliptic cohomology of CP(V). Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 49-78. doi : 10.4310/HHA.2024.v26.n2.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a3/

Cité par Sources :