On étale hypercohomology of henselian regular local rings with values in $p$-adic étale Tate twists
Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 21-48.

Voir la notice de l'article provenant de la source International Press of Boston

Let $R$ be the henselization of a local ring of a semistable family over the spectrum of a discrete valuation ring of mixed characteristic $(0, p)$ and $k$ the residue field of $R$. In this paper, we prove an isomorphism of étale hypercohomology groups $H^{n+1}_{\textrm{ét}} (R, \mathfrak{T}_r (n)) \simeq H^{1}_{\textrm{ét}} (k, W_r \Omega^n_{\log})$ for any integers $n \geqslant 0$ and $r \gt 0$ where $\mathfrak{T}_r (n)$ is the p-adic Tate twist and $W_r \Omega^n_{\log}$ is the logarithmic Hodge–Witt sheaf. As an application, we prove the local-global principle for Galois cohomology groups over function fields of curves over an excellent henselian discrete valuation ring of mixed characteristic.
DOI : 10.4310/HHA.2024.v26.n2.a2
Classification : 14F20, 14F30, 14F42
Keywords: Gersten-type conjecture, local-global principle, $p$-adic Tate twist
@article{HHA_2024_26_2_a1,
     author = {Makoto Sakagaito},
     title = {On \'etale hypercohomology of henselian regular local rings with values in $p$-adic \'etale {Tate} twists},
     journal = {Homology, homotopy, and applications},
     pages = {21--48},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a2/}
}
TY  - JOUR
AU  - Makoto Sakagaito
TI  - On étale hypercohomology of henselian regular local rings with values in $p$-adic étale Tate twists
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 21
EP  - 48
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a2/
DO  - 10.4310/HHA.2024.v26.n2.a2
LA  - en
ID  - HHA_2024_26_2_a1
ER  - 
%0 Journal Article
%A Makoto Sakagaito
%T On étale hypercohomology of henselian regular local rings with values in $p$-adic étale Tate twists
%J Homology, homotopy, and applications
%D 2024
%P 21-48
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a2/
%R 10.4310/HHA.2024.v26.n2.a2
%G en
%F HHA_2024_26_2_a1
Makoto Sakagaito. On étale hypercohomology of henselian regular local rings with values in $p$-adic étale Tate twists. Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 21-48. doi : 10.4310/HHA.2024.v26.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a2/

Cité par Sources :