Homotopy type of the independence complex of some categorical products of graphs
Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 349-373.

Voir la notice de l'article provenant de la source International Press of Boston

It was conjectured by Goyal, Shukla and Singh that the independence complex of the categorical product $K_2 \times K_3 \times K_n$ has the homotopy type of a wedge of $(n-1)(3n-2)$ spheres of dimension $3$. Here we prove this conjecture by calculating the homotopy type of the independence complex of the graphs $C_{3r} \times K_n$ and $K_2 \times K_m \times K_n$. For $C_m \times K_n$ when $m$ is not a multiple of $3$, we calculate the homotopy type for $m = 4, 5$ and show that for other values it has to have the homotopy type of a wedge of spheres of at most $2$ consecutive dimensions and maybe some Moore spaces.
DOI : 10.4310/HHA.2024.v26.n2.a17
Classification : 05C76, 05E45, 55P10, 55P15
Keywords: independence complex, homotopy type
@article{HHA_2024_26_2_a16,
     author = {Omar Antol{\'\i}n Camarena and Andr\'es Carnero Bravo},
     title = {Homotopy type of the independence complex of some categorical products of graphs},
     journal = {Homology, homotopy, and applications},
     pages = {349--373},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n2.a17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a17/}
}
TY  - JOUR
AU  - Omar Antolín Camarena
AU  - Andrés Carnero Bravo
TI  - Homotopy type of the independence complex of some categorical products of graphs
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 349
EP  - 373
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a17/
DO  - 10.4310/HHA.2024.v26.n2.a17
LA  - en
ID  - HHA_2024_26_2_a16
ER  - 
%0 Journal Article
%A Omar Antolín Camarena
%A Andrés Carnero Bravo
%T Homotopy type of the independence complex of some categorical products of graphs
%J Homology, homotopy, and applications
%D 2024
%P 349-373
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a17/
%R 10.4310/HHA.2024.v26.n2.a17
%G en
%F HHA_2024_26_2_a16
Omar Antolín Camarena; Andrés Carnero Bravo. Homotopy type of the independence complex of some categorical products of graphs. Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 349-373. doi : 10.4310/HHA.2024.v26.n2.a17. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a17/

Cité par Sources :