The magnitude homology of a hypergraph
Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 325-348.

Voir la notice de l'article provenant de la source International Press of Boston

The magnitude homology, introduced by R. Hepworth and S. Willerton, offers a topological invariant that enables the study of graph properties. Hypergraphs, being a generalization of graphs, serve as popular mathematical models for data with higher-order structures. In this paper, we focus on describing the topological characteristics of hypergraphs by considering their magnitude homology. We begin by examining the distances between hyperedges in a hypergraph and establish the magnitude homology of hypergraphs. Additionally, we explore the relationship between the magnitude and the magnitude homology of hypergraphs. Furthermore, we derive several functorial properties of the magnitude homology for hypergraphs. Lastly, we present the Künneth theorem for the simple magnitude homology of hypergraphs.
DOI : 10.4310/HHA.2024.v26.n2.a16
Classification : 05C65, 55N35, 55U25
Keywords: hypergraph, magnitude, magnitude homology, Künneth theorem
@article{HHA_2024_26_2_a15,
     author = {Wanying Bi and Jingyan Li and Jie Wu},
     title = {The magnitude homology of a hypergraph},
     journal = {Homology, homotopy, and applications},
     pages = {325--348},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a16/}
}
TY  - JOUR
AU  - Wanying Bi
AU  - Jingyan Li
AU  - Jie Wu
TI  - The magnitude homology of a hypergraph
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 325
EP  - 348
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a16/
DO  - 10.4310/HHA.2024.v26.n2.a16
LA  - en
ID  - HHA_2024_26_2_a15
ER  - 
%0 Journal Article
%A Wanying Bi
%A Jingyan Li
%A Jie Wu
%T The magnitude homology of a hypergraph
%J Homology, homotopy, and applications
%D 2024
%P 325-348
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a16/
%R 10.4310/HHA.2024.v26.n2.a16
%G en
%F HHA_2024_26_2_a15
Wanying Bi; Jingyan Li; Jie Wu. The magnitude homology of a hypergraph. Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 325-348. doi : 10.4310/HHA.2024.v26.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a16/

Cité par Sources :