-modules in the world of simplicial sets, based on actions of a certain simplicial monoid
$E\M$
originally appearing in the construction of global algebraic
$K$
-theory.As our main results, we show that strictly commutative monoids with respect to a certain box product on these simplicial $*$-modules yield models of equivariantly and globally coherently commutative monoids, and we give a characterization of simplicial $*$-modules in terms of a certain mildness condition on the $E\M$-action, relaxing the notion of tameness previously investigated by Sagave–Schwede and the first author.
@article{HHA_2024_26_2_a11,
author = {Tobias Lenz and Anna Marie Schr\"oter},
title = {Simplicial $*$-modules and mild actions},
journal = {Homology, homotopy, and applications},
pages = {229--258},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2024},
doi = {10.4310/HHA.2024.v26.n2.a12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a12/}
}
TY - JOUR
AU - Tobias Lenz
AU - Anna Marie Schröter
TI - Simplicial $*$-modules and mild actions
JO - Homology, homotopy, and applications
PY - 2024
SP - 229
EP - 258
VL - 26
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a12/
DO - 10.4310/HHA.2024.v26.n2.a12
LA - en
ID - HHA_2024_26_2_a11
ER -
%0 Journal Article
%A Tobias Lenz
%A Anna Marie Schröter
%T Simplicial $*$-modules and mild actions
%J Homology, homotopy, and applications
%D 2024
%P 229-258
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a12/
%R 10.4310/HHA.2024.v26.n2.a12
%G en
%F HHA_2024_26_2_a11
Tobias Lenz; Anna Marie Schröter. Simplicial $*$-modules and mild actions. Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 229-258. doi : 10.4310/HHA.2024.v26.n2.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a12/