Cohomology of spaces of Hopf equivariant maps of spheres
Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 219-227.

Voir la notice de l'article provenant de la source International Press of Boston

For any natural numbers $k \leqslant n$, the rational cohomology ring of the space of continuous maps $S^{2k-1} \to S^{2n-1}$ (respectively, $S^{4k-1} \to S^{4n-1}$, which are equivariant under the Hopf action of the circle (respectively, of the group $S^3$ of unit quaternions), is naturally isomorphic to that of the Stiefel manifold $V_k (\mathbb{C}^n)$ (respectively, $V_k (\mathbb{H}^n))$. The natural maps of integral cohomology groups of these spaces of equivariant maps to cohomology of Stiefel manifolds are surjective but not injective.
DOI : 10.4310/HHA.2024.v26.n2.a11
Classification : 55P91, 55R91, 57R91
Keywords: equivariant map, configuration space, Stiefel manifold, spectral sequence
@article{HHA_2024_26_2_a10,
     author = {V.A. Vassiliev},
     title = {Cohomology of spaces of {Hopf} equivariant maps of spheres},
     journal = {Homology, homotopy, and applications},
     pages = {219--227},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n2.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a11/}
}
TY  - JOUR
AU  - V.A. Vassiliev
TI  - Cohomology of spaces of Hopf equivariant maps of spheres
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 219
EP  - 227
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a11/
DO  - 10.4310/HHA.2024.v26.n2.a11
LA  - en
ID  - HHA_2024_26_2_a10
ER  - 
%0 Journal Article
%A V.A. Vassiliev
%T Cohomology of spaces of Hopf equivariant maps of spheres
%J Homology, homotopy, and applications
%D 2024
%P 219-227
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a11/
%R 10.4310/HHA.2024.v26.n2.a11
%G en
%F HHA_2024_26_2_a10
V.A. Vassiliev. Cohomology of spaces of Hopf equivariant maps of spheres. Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 219-227. doi : 10.4310/HHA.2024.v26.n2.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a11/

Cité par Sources :