On the coformality of classifying spaces for fibrewise self-equivalences
Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 209-218.

Voir la notice de l'article provenant de la source International Press of Boston

$\def\Baut{\operatorname{Baut}_1}$
Let
$F \to X p \overset{p}{\to} Y$
be a simply connected fibration with
$F$
and
$Y$
finite. Let
$\Baut X$
and
$\Baut p$
be the Dold–Lashof classifying spaces of
$X$
and
$p$
, respectively. In this paper, we study the relation between the coformality of
$\Baut F$
and that of
$\Baut p$
.
DOI : 10.4310/HHA.2024.v26.n2.a10
Classification : 55P62, 55R15
Keywords: rational homotopy theory, Sullivan (minimal) model, derivation, classifying space for fibration, coformal
@article{HHA_2024_26_2_a9,
     author = {Hirokazu Nishinobu and Toshihiro Yamaguchi},
     title = {On the coformality of classifying spaces for fibrewise self-equivalences},
     journal = {Homology, homotopy, and applications},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n2.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a10/}
}
TY  - JOUR
AU  - Hirokazu Nishinobu
AU  - Toshihiro Yamaguchi
TI  - On the coformality of classifying spaces for fibrewise self-equivalences
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 209
EP  - 218
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a10/
DO  - 10.4310/HHA.2024.v26.n2.a10
LA  - en
ID  - HHA_2024_26_2_a9
ER  - 
%0 Journal Article
%A Hirokazu Nishinobu
%A Toshihiro Yamaguchi
%T On the coformality of classifying spaces for fibrewise self-equivalences
%J Homology, homotopy, and applications
%D 2024
%P 209-218
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a10/
%R 10.4310/HHA.2024.v26.n2.a10
%G en
%F HHA_2024_26_2_a9
Hirokazu Nishinobu; Toshihiro Yamaguchi. On the coformality of classifying spaces for fibrewise self-equivalences. Homology, homotopy, and applications, Tome 26 (2024) no. 2, pp. 209-218. doi : 10.4310/HHA.2024.v26.n2.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n2.a10/

Cité par Sources :