Unstable algebras over an operad II
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 37-67.

Voir la notice de l'article provenant de la source International Press of Boston

$\def\P\{\mathcal{P}}$We work over the finite field $\mathbb{F}_q$. We introduce a notion of unstable $\P$-algebra over an operad $\P$. We show that the unstable $\P$-algebra freely generated by an unstable module is itself a free $\P$-algebra under suitable conditions. We introduce a family of ‘$q$-level’ operads which allows us to identify unstable modules studied by Brown–Gitler, Miller and Carlsson in terms of free unstable $q$-level algebras.
DOI : 10.4310/HHA.2024.v26.n1.a4
Classification : 17A30, 55S10
Keywords: Steenrod algebra, bialgebra, unstable module, operad
@article{HHA_2024_26_1_a3,
     author = {Sacha Ikonicoff},
     title = {Unstable algebras over an operad {II}},
     journal = {Homology, homotopy, and applications},
     pages = {37--67},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a4/}
}
TY  - JOUR
AU  - Sacha Ikonicoff
TI  - Unstable algebras over an operad II
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 37
EP  - 67
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a4/
DO  - 10.4310/HHA.2024.v26.n1.a4
LA  - en
ID  - HHA_2024_26_1_a3
ER  - 
%0 Journal Article
%A Sacha Ikonicoff
%T Unstable algebras over an operad II
%J Homology, homotopy, and applications
%D 2024
%P 37-67
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a4/
%R 10.4310/HHA.2024.v26.n1.a4
%G en
%F HHA_2024_26_1_a3
Sacha Ikonicoff. Unstable algebras over an operad II. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 37-67. doi : 10.4310/HHA.2024.v26.n1.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a4/

Cité par Sources :