On finite domination and Poincaré duality
Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 29-35.

Voir la notice de l'article provenant de la source International Press of Boston

The object of this paper is to show that non-homotopy finite Poincaré duality spaces are plentiful. Let $π$ be a finitely presented group. Assuming that the reduced Grothendieck group $\widetilde{K}_0 (\mathbb{Z} [\pi])$ has a non-trivial $2$-divisible element, we construct a finitely dominated Poincaré space $X$ with fundamental group $π$ such that $X$ is not homotopy finite. The dimension of $X$ can be made arbitrarily large. Our proof relies on a result which says that every finitely dominated space possesses a stable Poincaré duality thickening.
DOI : 10.4310/HHA.2024.v26.n1.a3
Classification : 19J05, 57P10, 16E20
Keywords: Poincaré duality space, finite domination, Wall finiteness obstruction
@article{HHA_2024_26_1_a2,
     author = {John R. Klein},
     title = {On finite domination and {Poincar\'e} duality},
     journal = {Homology, homotopy, and applications},
     pages = {29--35},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2024},
     doi = {10.4310/HHA.2024.v26.n1.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a3/}
}
TY  - JOUR
AU  - John R. Klein
TI  - On finite domination and Poincaré duality
JO  - Homology, homotopy, and applications
PY  - 2024
SP  - 29
EP  - 35
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a3/
DO  - 10.4310/HHA.2024.v26.n1.a3
LA  - en
ID  - HHA_2024_26_1_a2
ER  - 
%0 Journal Article
%A John R. Klein
%T On finite domination and Poincaré duality
%J Homology, homotopy, and applications
%D 2024
%P 29-35
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a3/
%R 10.4310/HHA.2024.v26.n1.a3
%G en
%F HHA_2024_26_1_a2
John R. Klein. On finite domination and Poincaré duality. Homology, homotopy, and applications, Tome 26 (2024) no. 1, pp. 29-35. doi : 10.4310/HHA.2024.v26.n1.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2024.v26.n1.a3/

Cité par Sources :